МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАРАЧАЕВО-ЧЕРКЕССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ У.Д. АЛИЕВА»

Физико-математический факультет Кафедра математического анализа

> УТВЕРЖДАЮ И. о. проректора по УР М. Х. Чанкаев «29» мая 2024 г., протокол № 8

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ТЕОРИЯ ФУНКЦИЙ ДЕЙСТВИТЕЛЬНОГО ПЕРЕМЕННОГО

(наименование дисциплины (модуля)

Направление подготовки

44.03.05 Педагогическое образование

(с двумя профилями подготовки)

(шифр, название направления)

Направленность (профиль) подготовки

Математика; информатика

Квалификация выпускника *бакалавр*

Форма обучения

Очная/очно-заочная/заочная

Год начала подготовки - 2024

КОМПЕТЕНЦИИ ПО ДИСЦИПЛИНЕ «ТЕОРИЯ ФУНКЦИЙ ДЕЙСТВИТЕЛЬНОГО ПЕРЕМЕННОГО»

Код компе- тенций	Содержание компетенции в соответствии с ФГОС ВО/ОПВО	Индикаторы достижения сформированности компетенций
УК-1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	УК-1.1. Демонстрирует знание особенностей системного и критического мышления, аргументированно формирует собственное суждение и оценку информации, принимает обоснованное решение УК-1.2. Применяет логические формы и процедуры, способен к рефлексии по поводу собственной и чужой мыслительной деятельности УК-1.3. Анализирует источники информации с целью выявления их противоречий и поиска достоверных суждений
ПК-1	Способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач	ПК-1.1. Знает структуру, состав и дидактические единицы предметной области (преподаваемого предмета) ПК-1.2. Умеет осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС ОО ПК-1.3. Демонстрирует умение разрабатывать различные формы учебных занятий, применять методы, приемы и технологии обучения, в том числе информационные

ТЕСТОВЫЙ МАТЕРИАЛ ДЛЯ ДИАГНОСТИКИ ИНДИКАТОРОВ ОЦЕНИВАНИЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

No	Правильный	Содержание вопроса	Компе
зада	ответ		тенция
ния			
		ЗАДАНИЯ ОТКРЫТОГО ТИПА НА ДОПОЛНЕНИЕ	
1		Прочитайте текст и запишите правильный ответ.	ПК-1
		Множество $A = \left\{1, \frac{1}{2},, \frac{1}{n},, 0\right\}$	
2		Прочитайте текст и запишите правильный ответ.	ПК-1
		Множество \boldsymbol{A} точек, координаты которых удовлетворяют условиям: $ \begin{cases} x+y>5, \\ x^2+y^2>36 \end{cases} $	
3		Прочитайте текст и запишите правильный ответ. Тригонометрическая система является системой в пространстве $L_2 \big[0, 2\pi \big]$	УК-1
4		Прочитайте текст и запишите правильный ответ. Некоторое соотношение или обстоятельство имеет место на \boldsymbol{E} , если множество точек в которых оно выполняется, имеет меру 0	УК-1

	ЗАДАНИЯ ОТКРЫТОГО ТИПА СВОБОДНОГО ИЗЛОЖЕНИЯ С РАЗВЕРНУТЫМ ОТВЕТОМ	
5	Прочитайте текст и запишите развернутый ответ. Если из всякой последовательности в метрическом пространстве X можно извлечь сходящуюся подпоследовательность	УК-1
6	Прочитайте текст и запишите развернутый ответ. Мощность множества всех непрерывных функций, определенных на отрезке $[a,b]$, имеет мощность	УК-1
7	Прочитайте текст и запишите развернутый ответ. Мощность множества всех вещественных функций, определенных на отрезке $[0,1]$, имеет мощность	ПК-1
8	Прочитайте текст и запишите развернутый ответ. Среди линейно независимых семейств в гильбертовом пространстве выделяются эти семейства. Они являются системой векторов $(a_1,a_2,,a_n,)$, у которой $(a_i,a_j)=0$, при $i\neq j$ и $(a_i,a_i)=1$, при всех i	ПК-1
	ЗАДАНИЯ ЗАКРЫТОГО ТИПА НА УСТАНОВЛЕНИЕ ПОСЛЕДОВАТЕЛЬНОСТИ	
9	Прочитайте текст и установите последовательность. Пусть X - линейное нормированное пространство над полем комплексных чисел C . Тогда скалярным произведением в X называется функционал $(\cdot,\cdot)\colon X^2\to C$ удовлетворяющий следующим условиям: 1. $(\lambda x,y)=\lambda(x,y); \forall \lambda\in C, x,y\in X;$ 2. $(x,x)=0\Leftrightarrow x=0;$ 3. $(x,y)=\overline{(y,x)}; \forall x,y\in X;$ 4. $(x,x)\geq 0; \forall x\in X;$ 5. $(x+y,z)=(x,z)+(y,z); \forall x,y,z\in X;$ 3апишите соответствующую последовательность правильности следования условий в виде цифр слева направо	УК-1
10	Прочитайте текст и установите последовательность.	УК-1
10	В исследовании меры открытых множеств имеет место теорема: Если $G = \bigcup_{i=1}^{\infty} (a_i, b_i); (a_i, b_i)$ - составляющие интервалы G , то ряд $\sum_{i=1}^{\infty} m(a_i, b_i) = \sum_{i=1}^{\infty} b_i - a_i - \text{сходится.} B данной \text{теореме} \text{присутствует}$	JKT
	$\sum_{i=1}^{\infty} m(a_i,b_i) = \sum_{i=1}^{\infty} b_i - a_i - \text{сходится. } \text{В} \text{ данной теореме присутствует}$ определенная последовательность применения понятий и терминов для доказательства. Каков их порядок. 1. G – ограничено 2. $G \subset (a_0,b_0)$ 3. Ряд знакоположительный 4. Частичные суммы S_n возрастают 5. $\lim_{n \to \infty} S_n = \infty$ 6. $S_n < b_0 - a_0$ - ограничены сверху Запишите соответствующую последовательность правильности следования условий в виде цифр слева направо	
11	Прочитайте текст и установите последовательность. Строение замкнутого множества описывает теорема, которая формулируется в виде: Если замкнутое множество <i>F</i> непусто и ограничено сверху (снизу), то оно имеет наибольший (наименьший) элемент. В данной теореме присутствует определенная последовательность применения понятий и терминов для доказательства.	ПК-1

_		
	Каков их порядок для первого случая.	
	$1. x_0$ - предельная точка F	
	2. Существует $x_0 = \sup F < +\infty$	
	3. <i>F</i> ограничено сверху	
	4. $\forall n \in N; \exists x_n \in F : x_0 - \frac{1}{n} < x_n \le x_0$	
	5. F замкнуто, ⇒ x_0 ∈ F	
	6. x_0 - наибольший элемент F	
	Запишите соответствующую последовательность правильности следования условий в виде цифр слева направо	
12	Прочитайте текст и установите последовательность.	ПК-1
	Теорема о вложенных шарах обладает последовательностью понятий необходимых для окончательного утверждения. Каков порядок	
	последовательности этих понятий в данной теореме:	
	1. Радиусы шаров стремятся к нулю.	
	2. Последовательность шаров имеет непустое пересечение.	
	3. Последовательность вложенных друг в друга замкнутых шаров.4. Метрическое пространство полно.	
	Запишите соответствующую последовательность правильности	
	следования условий в виде цифр слева направо	
13	· · ·	УК-1
	Известно, что каждый линейный оператор А, действующий в	
	конечномерном евклидовом пространстве R, ограничен. В данном факте присутствует определенная последовательность применения понятий и	
	терминов для полного доказательства. Каков их порядок.	
	1. Произвольный вектор x может быть записан в виде $x = \sum_{i=1}^{n} (x, e_i) e_i$	
	2. Учитывается, что $\ e_i\ =1$	
	$ Ax = A(\sum_{i=1}^{n} (x, e_i) e_i) \le \sum_{i=1}^{n} (x, e_i) \cdot Ae_i \le $	
	$\leq \sum_{i=1}^{n} x \cdot e_{i} \cdot Ae_{i} \leq K_{0} \sum_{i=1}^{n} x = nK_{0} x $	
	4. Величина nK_0 есть граница для оператора A	
	5. Выбирается в R ортонормированный базис $\{e_1,,e_n\}$	
	6. Полагается $K_0 = \max \{ Ae_1 ,, Ae_n \}$	
	Запишите соответствующую последовательность правильности	
	следования условий в виде цифр слева направо	
14	Прочитайте текст и установите последовательность. Замкнутое подпространство Y полного метрического пространства X	ПК-1
	является полным.	
	В данном предложении существует определенная последовательность	
	применения понятий и терминов для полного доказательства. Каков их	
	порядок.	
	1. Множество <i>Y</i> замкнутое	
	2. Элемент $x_0 \in Y$ то есть последовательность $\{x_n\}$ сходится в Y	
	3. По определению $x_0 \in Y$ предельная точка последовательности $\{x_n\}$ и	
	множества $Y \subset X$	
	4. $\{x_n\}$ - фундаментальная последовательность в Y	
	5. Так как $Y \subset X$, X – полное, то $x_n \to x_0$ в X	
	ı	

	Запишите соответствующую последовательность правильности	
	следования условий в виде цифр слева направо	
15	ЗАДАНИЯ ЗАКРЫТОГО ТИПА НА УСТАНОВЛЕНИЕ СООТВЕТСТВИЯ	УК-1
13	Прочитайте текст и установите соответствие. Установите соответствие между множествами и их смысловым	У К -1
	содержанием, путем подбора к каждой позиции данной в левом столбце,	
	соответствующей позиции из правого столбца.	
	А Множество открытое 1 Содержит все свои предельные точки	
	Б Множество замкнутое 2 Множество всех предельных точек	
	В Производное множество 3 Состоит только из внутренних точек	
	Г Множество плотное в себе 4 Все точки множества есть предельные	
	Запишите выбранные цифры под соответствующими буквами:	
	Α Β Γ	
16	Прочитайте текст и установите соответствие.	УК-1
	Установите соответствие между неравенствами и их математическим	
	выражением, путем подбора к каждой позиции данной в левом столбце,	
	соответствующей позиции из правого столбца.	
	$\left \begin{array}{c c} A & \text{Неравенство} \\ \Gamma$ ёльдера $\left \begin{array}{c c} 1 & \sum_{i=1}^{\infty} \left \xi_i \eta_i \right \leq \left(\sum_{i=1}^{\infty} \left \xi_i \right ^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^{\infty} \left \eta_i \right ^2 \right)^{\frac{1}{2}} \end{array} \right $	
	$\left \begin{array}{c c}A\end{array}\right $ Гёльдера $\left \begin{array}{c c}1\end{array}\right \underset{i=1}{\overset{r}{\sum}} \varsigma_i\eta_i \leq \left(\underset{i=1}{\overset{r}{\sum}} \varsigma_i \end{array}\right)$	
	$ \left \begin{array}{c} B \end{array} \right \text{ Неравенство} \\ Mинкoвckofo \end{array} \qquad \left \begin{array}{c} 2 \\ \sum_{i=1}^{\infty} \left \xi_i \eta_i \right \leq \left(\sum_{i=1}^{\infty} \left \xi_i \right ^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{\infty} \left \eta_i \right ^q \right)^{\frac{1}{q}}, \frac{1}{p} + \frac{1}{q} = 1 \end{array} \right $	
	B Hepabehetbo $ \left \begin{array}{c} 3 \end{array} \right \left(\sum_{i=1}^{\infty} \left \xi_i + \eta_i \right ^p \right)^{\frac{1}{p}} \leq \left(\sum_{i=1}^{\infty} \left \xi_i \right ^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{\infty} \left \eta_i \right ^p \right)^{\frac{1}{p}}, \ p \geq 1 $	
	$ \left \begin{array}{c} \mathbf{B} \right \text{ Неравенство} \\ \mathbf{V}_{\text{ONLY}} \mathbf{F}_{\text{TARKED PARTOR}} \left 3 \right \left \begin{array}{c} \sum_{i=1}^{n} \left \xi_i + \eta_i \right ^p \\ \end{array} \right \leq \left \sum_{i=1}^{n} \left \xi_i \right ^p \right + \left \sum_{i=1}^{n} \left \eta_i \right ^p \right , p \geq 1 $	
	Коши-Буняковского	
	Запишите выбранные цифры под соответствующими буквами:	
	A B B	
	A B B	
17		ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их	ПК-1
17	Прочитайте текст и установите соответствие.	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца.	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца.	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n 1 $\ x\ = \sup_i \{\xi_i\}$	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n 1 $\ x\ = \sup_i \{\xi_i\}$	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n 1 $\ x\ = \sup_i \{\xi_i\}$	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n 1 $\ x\ = \sup_i \{\xi_i\}$ Б Пространство всех числовых последовательностей: I_1 2 $\ x\ = \sqrt{\sum_{i=1}^n \xi_i ^2}$	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n 1 $ x = \sup_i \{\xi_i\}$ Б Пространство всех числовых последовательностей: l_1 2 $ x = \sqrt{\sum_{i=1}^n \xi_i ^2}$	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n 1 $\ x\ = \sup_i \{\xi_i\}$ Б Пространство всех числовых последовательностей: I_1 2 $\ x\ = \sqrt{\sum_{i=1}^n \xi_i ^2}$ В Пространство ограниченных числовых последовательностей: m	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n Пространство всех числовых последовательностей: l_1 В Пространство ограниченных числовых последовательностей: m Запишите выбранные цифры под соответствующими буквами:	ПК-1
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n 1 $\ x\ = \sup_i \{\xi_i\}$ Б Пространство всех числовых последовательностей: I_1 2 $\ x\ = \sqrt{\sum_{i=1}^n \xi_i ^2}$ В Пространство ограниченных числовых последовательностей: m	ПК-1
	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n 1 $\ x\ = \sup_i \{\xi_i\}$ Б Пространство всех числовых последовательностей: l_1 2 $\ x\ = \sqrt{\sum_{i=1}^n \xi_i ^2}$ В Пространство ограниченных числовых последовательностей: m 3 $\ x\ = \sum_{i=1}^\infty \xi_i $ Запишите выбранные цифры под соответствующими буквами: А В В	
17	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n Пространство всех числовых последовательностей: I_1 В Пространство ограниченных числовых последовательностей: m Запишите выбранные цифры под соответствующими буквами: А В В Прочитайте текст и установите соответствие.	ПК-1 УК-1
	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n Пространство всех числовых последовательностей: I_1 В Пространство ограниченных числовых последовательностей: m Запишите выбранные цифры под соответствующими буквами: А В В Прочитайте текст и установите соответствие.	
	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. А Евклидово пространство: R^n 1 $\ x\ = \sup_i \{\xi_i\}$ Пространство всех числовых последовательностей: I_1 2 $\ x\ = \sqrt{\sum_{i=1}^n \xi_i ^2}$ В Пространство ограниченных числовых последовательностей: m Запишите выбранные цифры под соответствующими буквами: А В В Прочитайте текст и установите соответствие. Установите соответствие мер пересечения $E = \bigcap_{n=1}^\infty E_n$ - убывающей	
	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. A Евклидово пространство: R^n 1	
	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. A Евклидово пространство: R^n Пространство всех числовых последовательностей: I_1 B Пространство ограниченных числовых последовательностей: m Запишите выбранные цифры под соответствующими буквами: A В Прочитайте текст и установите соответствие. Установите соответствие мер пересечения $E = \bigcap_{n=1}^{\infty} E_n$ убывающей последовательности $\{E_n\}$ - измеримых множеств бесконечной меры, путем подбора к каждой позиции данной в левом столбце,	
	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. A Евклидово пространство: R^n 1	
	Прочитайте текст и установите соответствие. Установите соответствие между нормированными пространствами и их нормами, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца. A Евклидово пространство: R^n Пространство всех числовых последовательностей: I_1 B Пространство ограниченных числовых последовательностей: m Запишите выбранные цифры под соответствующими буквами: A В Прочитайте текст и установите соответствие. Установите соответствие мер пересечения $E = \bigcap_{n=1}^{\infty} E_n$ убывающей последовательности $\{E_n\}$ - измеримых множеств бесконечной меры, путем подбора к каждой позиции данной в левом столбце,	

	$A E_n = \left[-\frac{1}{n}, +\infty \right) \qquad 1 mE = 0$
	$\begin{bmatrix} A & E_n = \left[-\frac{1}{n}, +\infty \right) & 1 & mE = 0 \\ \hline B & E_n = \left[-1, 0 \right] \cup \left[n, +\infty \right); & 2 & mE = 1 \end{bmatrix}$
	Запишите выбранные цифры под соответствующими буквами:
19	Прочитайте текст и установите соответствие. Установите соответствие, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца.
	$igl igl A igr (a,b) \subset igl[c,digr] igr 1 igr (c,a) \cup igl[b,digr]$ - открыто
	$ig ig $ Б $ig [a,b]$ \subset (c,d) $ig $ 2 $ig [c,a]$ \cup \cup 1 - замкнуто
	$oxed{B} oxed{ [a,b]} \subset oxed{[c,d]} oxed{3} oxed{ [c,a)} oxed{U} oxed{(b,d]}$ - ни замкнуто, ни открыто
	Запишите выбранные цифры под соответствующими буквами:
	А Б В
20	
20	Прочитайте текст и установите соответствие. Установите соответствие множеств и их замыканий, путем подбора к каждой позиции данной в левом столбце, соответствующей позиции из правого столбца
	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	Б Множество точек вида: $2^{\frac{a}{b}}$; $2 [0, +\infty)$ где $a, b \in N$
	В Множество точек вида: $\frac{b^2}{4a^2+b^2}$; где $a,b \in Z$; и одновременно $a \neq 0, b \neq 0$.
	Запишите выбранные цифры под соответствующими буквами:
	А Б В
	2 1 3
	ЗАДАНИЯ КОМБИНИРОВАННОГО ТИПА С ВЫБОРОМ ОДНОГО ПРАВИЛЬНОГО ОТВЕТА
21	Прочитайте текст и выберите правильный ответ. УК-1
	Производное множество множества $\{\sin n\pi\alpha\}_{n=1}^{\infty}$, где α -
	иррациональное фиксированное число, есть:
	1. [-1, 1]
	2. (0, 1)
	3. $\{0,1\}$
	4. [0, 1]
22	Прочитайте текст и выберите правильный ответ. В нормированном пространстве, расстояние между любыми двумя его элементами можно ввести по формуле:

	1. $\rho(x,y) = x+y $	
	$2. \ \rho(x,y) = \ x \cdot y\ $	
	3. $\rho(x,y) = x-y $	
	4. $\rho(x, y) = \sqrt{\ x - y\ }$	
23	▼ 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	УК-1
	Мера графика непрерывной на отрезке $\left[a,b\right]$ функции равна	
	1. $1 - f(x) $	
	2. 0	
	3. 1	
	4. $ f(x) $	
24	Прочитайте текст и выберите правильный ответ.	ПК-1
24	1	11111-1
	Значение интеграла Лебега: $\int\limits_0^{} f\left(x\right) dx, \qquad \text{если:}$	
	(r dra r uppgwoygruy forwar you 1	
	x , оля x – иррациональных, оольших, чем $\frac{1}{2}$,	
	$f(x) = \begin{cases} x^2, \partial \pi & x - uppa uuo han bh $	
	$f(x) = \begin{cases} x, \partial \pi & x - uppaциональных, больших, чем \frac{1}{2}, \\ x^2, \partial \pi & x - uppaциональных, меньших, чем \frac{1}{2}, \\ 0, в рациональных точках. \end{cases}$ равно:	
	1. 0	
	$2. \frac{1}{2}$	
	3. $\frac{10}{24}$	
	24 4. 0,32	
25	·	ПК-1
	Функционал $l(x)$, определенный на линейном нормированном	
	пространстве X , называется ограниченным, если $\exists \alpha > 0$, что:	
	$1. \ l(x)\ \leq \alpha \ x\ $	
	$2. l(x) \le \alpha x $	
	$3. \alpha \ l(x)\ \leq \ x\ $	
	$4. \frac{\ l(x)\ }{\alpha} \ge \ x\ $	
26	Прочитайте текст и выберите правильный ответ.	УК-1
	Интеграл Лебега на множестве $oldsymbol{E}$ от ограниченной измеримой функции	
	f(x), определяется по формуле:	

	1. $\int_{E} f(x)dx = \lim_{\lambda \to 0} \sum_{k=0}^{n} (y_k - me_k); \lambda = \max_{k} (y_{k+1} - y_k)$	
	$2. \int_{E}^{E} f(x)dx = \lim_{\lambda \to 0} \sum_{k=0}^{\infty} y_k me_k; \lambda = \max_{k} (y_{k+1} \cdot y_k)$	
	3. $\int_{E}^{E} f(x)dx = \lim_{\lambda \to 0} \sum_{k=0}^{n} y_{k} me_{k}; \lambda = \max_{k} (y_{k+1} - y_{k})$	
	$\frac{1}{E}$ ЗАДАНИЯ КОМБИНИРОВАННОГО ТИПА С ВЫБОРОМ	
	НЕСКОЛЬКИХ ПРАВИЛЬНЫХ ОТВЕТОВ	
27	Прочитайте текст и выберите правильные ответы.	УК-1
	Дано метрическое пространство (N, ρ), где N – множество натуральных	
	чисел и $\rho(n,m) = \begin{cases} 1 + \frac{1}{n+m}, n \neq m \\ 0, n = m \end{cases}$. Определим последовательность	
	вложенных шаров с центром в точке n и радиуса $1 + \frac{1}{2n}$:	
	$\overline{B}\left(1+\frac{1}{2n},n\right)=\left\{m:\rho\left(m,n\right)\leq 1+\frac{1}{2n}\right\},n=1,2,\ldots$ Шары $\overline{B}\left(1+\frac{1}{2n},n\right)$	
	замкнуты и вложены друг в друга, пространство (N, ρ) – полно, так как	
	каждая фундаментальная последовательность сходится в этом пространстве. Какие условия теоремы о вложенных шарах нарушены.	
	1. Пространство полно	
	2. Шары замкнуты и вложены друг в друга	
	 Стремление к нулю радиусов шаров Пересечение вложенных шаров пусто 	
28	Прочитайте текст и выберите правильные ответы.	ПК-1
	Пусть E - измеримое множество конечной меры и $\{f_n\}$ -	
	последовательность измеримых на E функций. Для последовательности $\{f_n\}$ выполняются эти условия:	
	1. Если $\{f_n\}$ сходится почти всюду	
	2. Если $\{f_n\}$ сходится равномерно	
	3. Она измерима	
	4. Она сходится по мере.	
	5. Если $\{f_n\}$ слабо сходится	
	6. Она сходится на множестве меры ноль.	
29	Прочитайте текст и выберите правильные ответы. Во всяком сепарабельном гильбертовом пространстве Н существует	ПК-1
	1. Ортогональный базис из несчетного числа элементов.	
	2. Ортогональный базис из конечного числа элементов.	
	3. Ортогональный базис из счетного числа элементов.	
	4. Ортонормированный базис из конечного или счетного числа элементов.	
30	Прочитайте текст и выберите правильные ответы.	УК-1
	Дано множество $M = \{x \in C^1[0,1]\}: x'\left(\frac{1}{2}\right) = 2$ в пространстве $C^1[0,1].$	
	Найти M' - множество предельных точек и сделать вывод о природе	
	данного множества.	
	1. $M' \supset M$	

	2. $M' = M$	
	$3. M' \subset M$	
	4. M - открыто	
	$5. \ M$ - замкнуто	
	6. M - не замкнуто и не открыто	
31	Прочитайте текст и выберите правильные ответы. В построении интегральных сумм Лебега рассматриваются множества $e_i = E(y_i \le f < y_{i+1}), \ i = 0,1,n-1$. Множества e_i обладают определенными свойствами: 1. $e_i \cap e_j = \emptyset$, если $i \ne j$ 2. $\bigcup_{i=0}^n e_i = E$ 3. $\bigcup_{i=0}^{n-1} e_i = E$ 4. $m(E) = \sum_{i=0}^{n-1} m(e_i)$ 5. $e_i \cup e_j = \emptyset$, если $i \ne j$ 6. $m(E) = \sum_{i=0}^n m(e_i)$	ПК-1
32	Прочитайте текст и выберите правильные ответы. Найти скалярное произведение векторов $x(t)=t$; $y(t)=t+2$ в пространстве C [0,1] и проверить их ортогональность 1. Векторы ортогональны 2. Векторы неортогональны 3. $\frac{4}{3}$ 4. $\frac{2}{5}$ 5. $\frac{3}{2}$	УК-1